Profinite monoids as polyadic spaces

Sam van Gool

joint work with Benjamin Steinberg and Jérémie Marquès

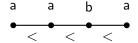
AutCat working group IRIF, Paris, 5 March 2024

Finite words and logic

Let Σ be a finite alphabet.

The set of finite words over Σ is a free **monoid** generated by $\Sigma.$

A word $w \in \Sigma^*$ may be viewed as a finite structure with linear order < and a decomposition into unary predicates $(P_a)_{a \in \Sigma}$:



Every monadic second order sentence in signature

$$S_{\Sigma} := \{<\} \cup \{P_a : a \in \Sigma\}$$

describes a set of finite Σ -words.

Regular sets

A set L of finite words is **regular** if it satisfies the following equivalent conditions:

- L is definable by a monadic second order sentence,
- L is recognizable by a finite automaton,
- L is saturated under a finite index monoid congruence on Σ*,
 i.e., there exists a surjective homomorphism

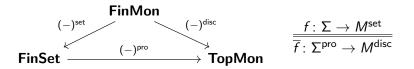
$$h: \Sigma^* \twoheadrightarrow M,$$

with M a finite monoid, such that, for some $P \subseteq M$,

$$L=h^{-1}(P).$$

The free profinite monoid

The **free profinite monoid** over Σ is the, up to isomorphism unique, embedding of Σ into a topological monoid Σ^{pro} such that, for every finite monoid M and function $f: \Sigma \to M^{\text{set}}$, there exists a unique continuous homomorphism $\overline{f}: \Sigma^{\text{pro}} \to M^{\text{disc}}$ that extends f.



Elements of Σ^{pro} are called **profinite words** over Σ .

Characterizing first-order logic

Theorem. A set $L \subseteq \Sigma^*$ is first-order definable

if, and only if,

L can be recognized by an **aperiodic** finite monoid, i.e., one satisfying the profinite equation

 $x^{\omega} = x^{\omega}x.$

Characterizing first-order logic

Theorem. A set $L \subseteq \Sigma^*$ is first-order definable

if, and only if,

L can be recognized by an **aperiodic** finite monoid, i.e., one satisfying the profinite equation

$$x^{\omega} = x^{\omega}x.$$

Here, for any $x \in \Sigma^{\text{pro}}$, the ω -power x^{ω} of x is defined as the unique idempotent element in the orbit-closure of x.

Aperiodicity is equivalent to the absence of non-trivial subgroups. We get the monoid of **proaperiodic words** as the quotient

$$\Sigma^{\mathsf{ap}} := \Sigma^{\mathsf{pro}} / \langle x^{\omega} = x^{\omega} x \rangle.$$

Schützenberger 1965; McNaughton & Papert 1971; Reiterman 1982

Constructions of the free profinite monoid

Theorem. The topological space underlying the free profinite monoid Σ^{pro} is homeomorphic to all of the following:

- the limit in TopMon of a projective diagram of finite monoids,
- an ultrametric completion of Σ^* ,
- ▶ the ultrafilter space of the Boolean algebra of regular sets.

Constructions of the free profinite monoid

Theorem. The topological space underlying the free profinite monoid Σ^{pro} is homeomorphic to all of the following:

- the limit in TopMon of a projective diagram of finite monoids,
- an ultrametric completion of Σ^* ,
- ▶ the ultrafilter space of the Boolean algebra of regular sets.

Theorem. The multiplication on Σ^{pro} is dual to a residuation structure on the regular subsets of Σ .

Reiterman 1982; Gehrke, Grigorieff & Pin 2008

Two instances

1. The equivalence

$\mathsf{aperiodic} \Leftrightarrow \mathsf{FO}\mathsf{-definable}$

induces a homeomorphism

 $\Sigma^{ap} \cong$ completions of the FO-theory of finite words.

Two instances

1. The equivalence

```
\mathsf{aperiodic} \Leftrightarrow \mathsf{FO}\mathsf{-definable}
```

induces a homeomorphism

 $\Sigma^{ap} \cong$ completions of the FO-theory of finite words.

2. Similarly, the equivalence

 $\mathsf{regular} \Leftrightarrow \mathsf{MSO}\mathsf{-definable}$

induces a homeomorphism

 $\Sigma^{pro}\cong$ completions of the MSO-theory of finite words.

The proaperiodic monoid of 0-types

Let $\boldsymbol{\Sigma}$ be a finite alphabet. Consider the FO-theory of finite words:

$$T \stackrel{\text{def}}{=} \{ \varphi \text{ an FO-sentence } \mid \text{ for all } w \in \Sigma^*, w \models \varphi \}$$

The proaperiodic monoid of 0-types

Let Σ be a finite alphabet. Consider the FO-theory of finite words:

$$\mathcal{T} \stackrel{\mathrm{def}}{=} \{ \varphi \text{ an FO-sentence } \mid \text{ for all } w \in \Sigma^*, w \models \varphi \}$$

A pseudofinite word is a model of the theory T. Concretely, it is a discrete linear order with endpoints, on which the predicates $(P_a)_{a\in\Sigma}$ are a partition, satisfying an FO-induction scheme.

FO-equivalence classes of pseudofinite words are in bijection with completions or 0-types of T.

This is the Stone space $S_T(0)$ of the Lindenbaum algebra of T.

The proaperiodic monoid of 0-types, continued

The space $S_T(0)$ admits a continuous multiplication: concatenate.

One needs to show that the concatenation of pseudofinite words is well-defined up to FO-equivalence. (Exercise.)

Theorem

 $\Sigma^{ap} \cong$ the topological monoid of pseudofinite words.

We can use this to analyze the structure of Σ^{ap} .

Steinberg & G. 2019

Similar things work for Σ^{pro} and MSO (Linkhorn 2021).

Two questions

We have seen:

Logical Theory	Profinite Monoid of 0-types
FO	Σ^{ap}
MSO	Σ^{pro}

Two questions

We have seen:

Logical Theory	Profinite Monoid of 0-types
FO	Σ^{ap}
MSO	Σ^{pro}

Т

We now ask:

- 1. When is a profinite monoid the type space of an FO theory?
- 2. When is the type space of an FO theory a profinite monoid?

Polyadic spaces

The dual equivalence **BoolAlg** \simeq^{op} **BoolSp** extends to a dual equivalence between:

Boolean hyperdoctrines and open polyadic Boolean spaces .

A polyadic Boolean space on a category **C** is a functor

 $\mathcal{S} \colon \mathbf{C}^{\mathrm{op}} \to \mathbf{BoolSp}$ such that every span in $\int \mathcal{S}$ admits a cocone. It is open if the image of any morphism is open.

To any FO theory T we can naturally associate a type space functor S_T with C = FinSet.

This works much more generally, for compact ordered spaces, giving type spaces for other first-order logics.

Joyal 1971; see also e.g. G. & Marques 2024

Profinite monoids as monoidal functors

Fact. A monoid M is profinite if, and only if, M is a monoid internal to the category of Boolean (Stone) spaces.

Thus, a profinite monoid M can be encoded as a functor $\mathcal{P}_M \colon \Delta_+ \to \mathbf{BoolSp}$, where Δ_+ is the category of finite linear orders with monotone functions:

$$\mathcal{P}_M(n) \stackrel{\mathrm{def}}{=} M^n,$$

 $\mathcal{P}_M(f: n \to k) \stackrel{\mathrm{def}}{=} (x_1, \dots, x_n) \mapsto \prod_{j \in f^{-1}(i)} x_j.$

These are exactly the monoidal functors $(\Delta_+, \oplus) \rightarrow (\text{BoolSp}, \times)$.

When is the monoidal functor a polyadic space?

A monoid *M* is equidivisible if, for any $m, n, \mu, \nu \in M$,

if $mn = \mu \nu$ then there exists $x \in M$ such that $mx = \mu$ and $x\nu = n$,

or $\mu x = m$ and $xn = \nu$.

When is the monoidal functor a polyadic space? A monoid M is equidivisible if, for any $m, n, \mu, \nu \in M$,

if $mn = \mu \nu$ then there exists $x \in M$ such that $mx = \mu$ and $x\nu = n$, or $\mu x = m$ and $xn = \nu$.

Theorem (Marquès 2021)

The monoidal functor \mathcal{P}_M associated to a profinite monoid M is an open polyadic Boolean space if, and only if, the following three properties hold:

- 1. M is equidivisible,
- 2. the element 1_M is isolated in the topology and the only invertible element in the monoid, and
- 3. the multiplication function $\cdot_M \colon M^2 \to M$ is an open map.