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Finite words and logic

Let Σ be a finite alphabet.

The set of finite words over Σ is a free monoid generated by Σ.

A word w ∈ Σ∗ may be viewed as a finite structure with linear

order < and a decomposition into unary predicates (Pa)a∈Σ:

a a b a

< < <

Every monadic second order sentence in signature

SΣ := {<} ∪ {Pa : a ∈ Σ}

describes a set of finite Σ-words.
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Regular sets

A set L of finite words is regular if it satisfies the following

equivalent conditions:

▶ L is definable by a monadic second order sentence,

▶ L is recognizable by a finite automaton,

▶ L is saturated under a finite index monoid congruence on Σ∗,

i.e., there exists a surjective homomorphism

h : Σ∗ ↠ M,

with M a finite monoid, such that, for some P ⊆ M,

L = h−1(P).
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The free profinite monoid

The free profinite monoid over Σ is the, up to isomorphism

unique, embedding of Σ into a topological monoid Σpro such that,

for every finite monoid M and function f : Σ → Mset, there exists a

unique continuous homomorphism f : Σpro → Mdisc that extends f .

FinMon

FinSet TopMon

(−)set (−)disc

(−)pro

f : Σ → Mset

f : Σpro → Mdisc

Elements of Σpro are called profinite words over Σ.
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Characterizing first-order logic

Theorem. A set L ⊆ Σ∗ is first-order definable

if, and only if,

L can be recognized by an aperiodic finite monoid, i.e., one

satisfying the profinite equation

xω = xωx .

Here, for any x ∈ Σpro, the ω-power xω of x is defined as the

unique idempotent element in the orbit-closure of x .

Aperiodicity is equivalent to the absence of non-trivial subgroups.

We get the monoid of proaperiodic words as the quotient

Σap := Σpro/⟨xω = xωx⟩.

Schützenberger 1965; McNaughton & Papert 1971; Reiterman 1982
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Constructions of the free profinite monoid

Theorem. The topological space underlying the free profinite

monoid Σpro is homeomorphic to all of the following:

▶ the limit in TopMon of a projective diagram of finite monoids,

▶ an ultrametric completion of Σ∗,

▶ the ultrafilter space of the Boolean algebra of regular sets.

Theorem. The multiplication on Σpro is dual to a residuation

structure on the regular subsets of Σ.

Reiterman 1982; Gehrke, Grigorieff & Pin 2008
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Two instances

1. The equivalence

aperiodic ⇔ FO-definable

induces a homeomorphism

Σap ∼= completions of the FO-theory of finite words.

2. Similarly, the equivalence

regular ⇔ MSO-definable

induces a homeomorphism

Σpro ∼= completions of the MSO-theory of finite words.
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The proaperiodic monoid of 0-types

Let Σ be a finite alphabet. Consider the FO-theory of finite words:

T
def
= {φ an FO-sentence | for all w ∈ Σ∗,w |= φ} .

A pseudofinite word is a model of the theory T . Concretely, it is a

discrete linear order with endpoints, on which the predicates

(Pa)a∈Σ are a partition, satisfying an FO-induction scheme.

FO-equivalence classes of pseudofinite words are in bijection with

completions or 0-types of T .

This is the Stone space ST (0) of the Lindenbaum algebra of T .
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The proaperiodic monoid of 0-types, continued

The space ST (0) admits a continuous multiplication: concatenate.

One needs to show that the concatenation of pseudofinite words is

well-defined up to FO-equivalence. (Exercise.)

Theorem

Σap ∼= the topological monoid of pseudofinite words.

We can use this to analyze the structure of Σap.

Steinberg & G. 2019

Similar things work for Σpro and MSO (Linkhorn 2021).
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Two questions

We have seen:

Logical Theory Profinite Monoid of 0-types

FO Σap

MSO Σpro

We now ask:

1. When is a profinite monoid the type space of an FO theory?

2. When is the type space of an FO theory a profinite monoid?
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Polyadic spaces

The dual equivalence BoolAlg ≃op BoolSp extends to a dual

equivalence between:

Boolean hyperdoctrines and open polyadic Boolean spaces .

A polyadic Boolean space on a category C is a functor

S : Cop → BoolSp such that every span in
∫
S admits a cocone. It

is open if the image of any morphism is open.

To any FO theory T we can naturally associate a type space

functor ST with C = FinSet.

This works much more generally, for compact ordered spaces,

giving type spaces for other first-order logics.

Joyal 1971; see also e.g. G. & Marques 2024
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Profinite monoids as monoidal functors

Fact. A monoid M is profinite if, and only if, M is a monoid

internal to the category of Boolean (Stone) spaces.

Thus, a profinite monoid M can be encoded as a functor

PM : ∆+ → BoolSp, where ∆+ is the category of finite linear

orders with monotone functions:

PM(n)
def
= Mn,

PM(f : n → k)
def
= (x1, . . . , xn) 7→

∏
j∈f −1(i)

xj .

These are exactly the monoidal functors (∆+,⊕) → (BoolSp,×).
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When is the monoidal functor a polyadic space?

A monoid M is equidivisible if, for any m, n, µ, ν ∈ M,

if mn = µν then there exists x ∈ M such that mx = µ and xν = n ,

or µx = m and xn = ν .

Theorem (Marquès 2021)

The monoidal functor PM associated to a profinite monoid M is an

open polyadic Boolean space if, and only if, the following three

properties hold:

1. M is equidivisible,

2. the element 1M is isolated in the topology and the only

invertible element in the monoid, and

3. the multiplication function ·M : M2 → M is an open map.
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